使用Keras实现MF模型的训练
引入
Matrix Factorisation之类的模型将User和Item使用隐向量的方式表征, 通常使用点积的方式得到一个(User, Item)
对的点击, 评分等情况. 在训练过程中, 根据损失函数, 将要训练的隐向量和偏置等参数经过计算, 得到与真实值的差距.
由于User和Item是用隐变量表征的, 每个都由一个单独的向量表示, 因此可以使用embedding的方式, 通过embedding lookup查找表示. 沿着这个思路, 使用交互数据进行训练(这使得整个训练过程类似于回归任务).
数据集
使用Movielens-100k数据集作为说明. 该数据集共有943
个user和1682
个item, 拥有100k
的评分记录, 即大约有7%
的(User, Item)
对是有评分记录的, 所有的评分在1-5
之间, 且为整数.
过程
首先读取数据集.
dataset = pd.read_csv("./data/ml-100k/u.data", sep="\t", header=None, names=["user_id", "item_id", "rating", "timestamp"])
dataset.head()
user_id item_id rating timestamp
0 196 242 3 881250949
1 186 302 3 891717742
2 22 377 1 878887116
3 244 51 2 880606923
4 166 346 1 886397596
查看user和item的数量:
len(dataset.user_id.unique()), len(dataset.item_id.unique())
(943, 1682)
为了保证所有user和item的索引是连续的, 并且从0开始, 使用pandas.Series.cat
相关的方法进行转换:
dataset.user_id = dataset.user_id.astype("category").cat.codes.values
dataset.item_id = dataset.item_id.astype("category").cat.codes.values
dataset.head()
user_id item_id rating timestamp
0 195 241 3 881250949
1 185 301 3 891717742
2 21 376 1 878887116
3 243 50 2 880606923
4 165 345 1 886397596
再将训练数据按80/20的比例分成训练集和开发集:
from sklearn.model_selection import train_test_split
train, test = train_test_split(dataset, test_size=0.2)
Matrix Factorisation方法将user和item用定长的低维向量表示, 从而类似于embedding方法.
假设有M个user, N个item, 则行为矩阵就是一个A[M,N]的矩阵, 假设每个元素用k维的向量表征, 则user和item的embedding矩阵分别为W[M,k]和H[]N,k]. 最简单的MF训练方法为: A≈W⋅HT.
下面开始使用keras
解决MF训练的问题.
from keras import backend as K
from keras.models import Model
from keras.layers import merge
from keras.layers import Input, Embedding, Flatten, Lambda
n_users, n_movies = len(dataset.user_id.unique()), len(dataset.item_id.unique())
n_latent_factors = 3
movie_input = Input(shape=[1],name="Item")
movie_embedding = Embedding(n_movies + 1, n_latent_factors, name="MovieEmbedding")(movie_input)
movie_vec = Flatten(name="FlattenMovies")(movie_embedding)
user_input = Input(shape=[1],name="User")
user_embedding = Embedding(n_users + 1, n_latent_factors,name="UserEmbedding")(user_input)
user_vec = Flatten(name="FlattenUsers")(user_embedding)
prod = merge.dot([movie_vec, user_vec], axes=-1)
model = Model([user_input, movie_input], prod)
model.compile("adam", "mean_squared_error")
model.summary()
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Item (InputLayer) (None, 1) 0
__________________________________________________________________________________________________
User (InputLayer) (None, 1) 0
__________________________________________________________________________________________________
MovieEmbedding (Embedding) (None, 1, 3) 5049 Item[0][0]
__________________________________________________________________________________________________
UserEmbedding (Embedding) (None, 1, 3) 2832 User[0][0]
__________________________________________________________________________________________________
FlattenMovies (Flatten) (None, 3) 0 MovieEmbedding[0][0]
__________________________________________________________________________________________________
FlattenUsers (Flatten) (None, 3) 0 UserEmbedding[0][0]
__________________________________________________________________________________________________
dot_1 (Dot) (None, 1) 0 FlattenMovies[0][0]
FlattenUsers[0][0]
==================================================================================================
Total params: 7,881
Trainable params: 7,881
Non-trainable params: 0
__________________________________________________________________________________________________
训练模型:
history = model.fit([train.user_id, train.item_id], train.rating, epochs=100)
Epoch 1/100
80000/80000 [==============================] - 10s 127us/step - loss: 12.5113
Epoch 2/100
80000/80000 [==============================] - 7s 84us/step - loss: 5.0213
Epoch 3/100
80000/80000 [==============================] - 6s 71us/step - loss: 2.0125
Epoch 4/100
80000/80000 [==============================] - 6s 70us/step - loss: 1.3367
Epoch 5/100
80000/80000 [==============================] - 6s 71us/step - loss: 1.0908
Epoch 6/100
80000/80000 [==============================] - 6s 72us/step - loss: 0.9856
......
Epoch 96/100
80000/80000 [==============================] - 6s 74us/step - loss: 0.7197
Epoch 97/100
80000/80000 [==============================] - 7s 83us/step - loss: 0.7193
Epoch 98/100
80000/80000 [==============================] - 6s 79us/step - loss: 0.7191
Epoch 99/100
80000/80000 [==============================] - 6s 74us/step - loss: 0.7186
Epoch 100/100
80000/80000 [==============================] - 6s 74us/step - loss: 0.7185
评估结果:
pd.Series(history.history["loss"]).plot(logy=True)
plt.xlabel("Epoch")
plt.ylabel("Train Error")
from sklearn.metrics import mean_absolute_error
y_hat = np.round(model.predict([test.user_id, test.item_id]),0)
y_true = test.rating
mean_absolute_error(y_true, y_hat)
0.6946
获取隐向量:
movie_embedding_learnt = model.get_layer(name='MovieEmbedding').get_weights()[0]
pd.DataFrame(movie_embedding_learnt).head()
0 1 2
0 0.851071 1.189640 1.343072
1 0.781866 0.685529 1.433414
2 0.993590 0.669892 1.075678
3 0.646283 1.750475 0.724367
4 0.888808 0.577949 1.447080
参考文章
最后更新于