最后更新于
最后更新于
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。
给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
示例 2:
示例 3:
提示:
1 <= tokens.length <= 104
tokens[i] 要么是一个算符("+"、"-"、"*" 或 "/"),要么是一个在范围 [-200, 200] 内的整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
逆波兰表达式由波兰的逻辑学家卢卡西维兹提出。逆波兰表达式的特点是:没有括号,运算符总是放在和它相关的操作数之后。因此,逆波兰表达式也称后缀表达式。
逆波兰表达式严格遵循「从左到右」的运算。计算逆波兰表达式的值时,使用一个栈存储操作数,从左到右遍历逆波兰表达式,进行如下操作:
如果遇到操作数,则将操作数入栈;
如果遇到运算符,则将两个操作数出栈,其中先出栈的是右操作数,后出栈的是左操作数,使用运算符对两个操作数进行运算,将运算得到的新操作数入栈。
整个逆波兰表达式遍历完毕之后,栈内只有一个元素,该元素即为逆波兰表达式的值。